Using the points on the unit circle, we graph the sine and the cosine of t. For example, the points in the first quadrants will be as following.

Period $=2 \pi$

t	$\sin (t)$	point
0	0	$(0,0)$
$\frac{\pi}{6}$	$\frac{1}{2}$	$\left(\frac{\pi}{6}, \frac{1}{2}\right)$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\left(\frac{\pi}{4}, \frac{\sqrt{2}}{2}\right)$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\left(\frac{\pi}{3}, \frac{\sqrt{3}}{2}\right)$
$\frac{\pi}{2}$	1	$\left(\frac{\pi}{2}, 1\right)$
$y=\sin (t)$		

Period $=2 \pi$

- Comparing sine functions:

- A sinusoidal function any function that can be expressed in the form $f(t)=A \sin (B t-C)+D$ or $f(t)=A \cos (B t-C)+D$.
- Midline: The horizontal line $y=D$, where D appears in the general form of a sinusoidal function. (It is called midline because D is the average y-value.)
- Amplitude:: The greatest vertical distance of a function from the midline; the absolute value of the constant A appearing in the definition of a sinusoidal function.
- A periodic function: A function $f(t)$ that satisfies $f(t+P)=f(t)$ for a specific constant P and any value of t. (P is the smallest positive value that satisfies such equation and is called the period.) The formula $P=\frac{2 \pi}{|B|}$ gives the period.
- Phase shift The horizontal displacement of the basic sine or cosine function; the constant $\frac{C}{B}$ for $-2 \pi<C<2 \pi$.

Now, you can complete Problems 1-3.

Transformations:

- The above picture can be explained using transformations, but using the above information is recommended instead.
- How to graph: Find the local max and min points, amplitude, period, phase shift and midline, then graph.

Now, you can complete Problem 4.

1. The period of $f(x)=2 \cos (4 x+\pi / 6)$ is
(a) 2π
(b) $\frac{\pi}{2}$
(c) $\pi / 2$
(d) 4π
2. Find a function that models the simple harmonic motion having Period 4 and amplitude 10. Assume that the initial displacement is zero, at time $t=0$.
3. Sketch two periods of the graph of $y=\frac{1}{3} \sin \left(2 x-\frac{\pi}{2}\right)$, labeling the maximum and minimum height, the x-intercepts and two more points on one period. List the amplitude, period and phase shift of $f(x)$.

4. Mechanical Engineering:

A weight is attached to a spring that is then hung from a board, as shown in the figure. As the spring oscillates up and down, the position (y) of the weight relative to the board ranges from -2 in . (at time $t=0$ second) to -6 in . (at time $t=2 \pi$ second) below the board. Assume the position (y) is given as a sinusoidal function of (t). Motion of this spring mass system is a simple harmonic motion.
(A) Find amplitude, period and $\underbrace{\text { vertical shift. }}$ gives midline

https://www.geogebra.org/m/ygcvqa9m
(B) Find a cosine function that gives the position (y) in terms of (t).
(C) Sketch a graph of the function for at least two periods; noting Part (A).
(D) Find a sine function for this motion and graph it.

5. Optional: Graph

$$
f(x)=\left\{\begin{array}{ll}
x & x<-2 \\
\sin (x) & -2 \leq x \leq 0 \\
-x^{2} & 0<x<2 \\
\cos (x) & x \geq 2
\end{array} .\right.
$$

Related Videos

1. Graph of Sine and Cosine Functions 1:
https://mediahub.ku.edu/media/MATH+-+Graph+of+Sine+and+Cosine+Functions+1.m4v/1_zqn7xygk
2. Graph of Sine and Cosine Functions 2:
https://mediahub.ku.edu/media/MATH+-+Graph+of+Sine+and+Cosine+Functions+2.m4v/1_3i8ik9rt
